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Abstract
 

In this paper we describe the most recent MIT Lincoln 

Laboratory language recognition system developed for the 

NIST 2015 Language Recognition Evaluation (LRE). The 

submission features a fusion of five core classifiers, with most 

systems developed in the context of an i-vector framework. 

The 2015 evaluation presented new paradigms. First, the 

evaluation included fixed training and open training tracks for 

the first time; second, language classification performance 

was measured across 6 language clusters using 20 language 

classes instead of an N-way language task; and third, 

performance was measured across a nominal 3-30 second 

range. Results are presented for the overall performance 

across the six language clusters for both the fixed and open 

training tasks. On the 6-cluster metric the Lincoln system 

achieved overall costs of 0.173 and 0.168 for the fixed and 

open tasks respectively. 

1. Introduction and Task 

The National Institute of Science and Technology (NIST) has 

conducted formal evaluations of language detection 

algorithms since 1994. In previous evaluations, NIST has 

explored issues related to language recognition ranging from 

closed-set language detection to confusable language pairs in 

the 2011 evaluation. In 2015 NIST pursued a different task 

and a new paradigm. The task for the NIST 2015 language 

recognition evaluation (LRE) was to determine the overall 

performance of systems when classification within six 

predefined language clusters is considered. Additionally, the 

(mandatory) core condition for the 2015 campaign was a fixed 

training data task where all the data used for system 

development was provided by NIST. The evaluation also 

included a second optional condition where developers could 

construct their systems using any data that they had available. 

The classification metric is defined as the overall cost over the 

six language clusters and is described in the NIST LRE 2015 

evaluation plan [1]. As mentioned earlier, in contrast to 

previous evaluations, the 2015 LRE focused on classifying 

target classes within six language clusters. The language 

clusters included Arabic, Chinese, English, French, Slavic and 

Iberian. The breakdown of these language clusters is 

presented in Table 1. 
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Cluster Target Classes 

Arabic Egyptian, Iraqi, Levantine, Maghrebi, 

Modern Standard 

Chinese Cantonese, Mandarin, Min, Wu 

English British, General American, Indian 

French West African, Haitian Creole 

Slavic Polish, Russian 

Iberian Caribbean Spanish, European Spanish, Latin 

American Spanish, Brazilian Portuguese 

TABLE 1. Language clusters for NIST LRE 2015. 

The per-cluster average cost, Cavg, was computed for all 

submissions for both the fixed and open development tasks 

following the NIST LRE 2015 evaluation plan [1]. The overall 

performance cost was computed by averaging Cavg across the 

language clusters. 

 

The organization of this paper is as follows: Section 2 

describes the partitioning of the data used for the MITLL 

submissions. Section 3 presents a description and the score 

fusion technique used on the submitted systems. Section 4 

presents system performance on the NIST 2015 LRE task and 

a discussion of the results, with Section 5 presenting 

conclusions and suggestions for future work. 

2. Development Data 

The development data description covers two areas: data 

handling for the fixed condition and data used for the open 

condition. First, we will describe some of the commonalities 

covering both data sets and then discuss specific elements for 

each data set. 

 

For both of these sets the Lincoln system used a common test 

set using the data provided NIST for the fixed condition. This 

test set consisted of segments generated by conducting speech 

activity detection on the files provided and extracting 
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segments of duration no shorter than 3 seconds and no longer 

than 30 seconds. The duration of the files extracted was 

uniformly distributed on the 3-30 seconds range to emulate the 

expected distribution of the evaluation segments. This test set 

covered roughly 40% of the total files provided by NIST for 

development. For languages where a large amount of data was 

provided and the duration of the provided files was longer than 

5 minutes, the amount of segments generated was limited to 10 

segments per file to reduce the possibility of biasing the 

performance of the system towards these languages. Table 2 

describes the amount of data provided by NIST for each class.  

 

LANGUAGE Cuts 
Speech 

(hrs) 

Iraqi (ara-acm) 420 43.44 

Levantine (ara-apc) 450 47.43 

Modern Standard (ara-arb) 406 3.65 

Maghrebi (ara-ary) 414 42.69 

Egyptian (ara-arz) 440 97.27 

British English (eng-gbr) 47 0.51 

Indian English (eng-sas) 418 7.82 

American English (eng-usg) 428 100.37 

Haitian Creole (fre-hat) 323 2.51 

West African French (fre-waf) 34 3.88 

Brazilian Portuguese (por-brz) 47 0.75 

Polish (qsl-pol) 487 31.25 

Russian (qsl-rus) 470 18.44 

Caribbean Spanish (spa-car) 120 29.84 

European Spanish (spa-eur) 38 4.03 

Latin American Spanish (spa-lac) 30 4.38 

Min (zho-cdo) 41 5.27 

Mandarin (zho-cmn) 438 74.62 

Wu (zho-wuu) 45 5.07 

Cantonese (zho-yue) 23 2.56 

TABLE 2. Development data distribution as provided 

by NIST. The NIST language codes are in parentheses. 

2.1. Fixed Condition 

For the fixed condition, the remaining 60% of the data 

provided by NIST was used for training. The data available for 

some of the languages was very limited, as can be observed in 

Table 2. To help reduce the impact of this data limitation in 

our system, multiple data augmentation techniques were 

considered ranging from simply reusing the same data by 

using both full files and segments generated from these files 

(effectively letting the systems use the same data file twice) to 

modifying the speech signal via warping and tempo 

modification. The only technique that showed consistent gains 

on contrastive experiments for our systems was data reuse into 

full files and segments. 

2.2. Open Condition 

As described earlier, the open condition allowed for 

development of the systems using any data sources and 

amounts deemed necessary by the system developers. For this 

condition, data was used for development from multiple 

sources including: 

 Telephone data from previous LREs (2007, 2009, 

2011), OHSU, OGI-22, Fisher, CallFriend, Babel, 

Ahumada, MI5-UK, and Appen 

 Broadcast wideband data from the Qatar-Dialect 

(Arabic) and Kalaka (European Spanish and British 

English) collections. Segments were filtered to 4 

kHz and downsampled to 8 kHz. 

 Narrowband segments from VOA broadcasts. 

 

During development it was observed that using the additional 

data hurt performance on our experiments. Additional 

experiments showed that judiciously adding data to some 

specific classes helped improve performance. This issue will 

be discussed in more detail in Section 4. 

3. Classifiers 

As in previous LREs, the language recognition system 

submission consisted of the fusion of multiple classifiers. For 

LRE 2015, systems developed were largely based on the i-

vector framework [7]. In this section, we describe the different 

classifiers and the fusion/calibration strategy.  

3.1. Bottleneck features Classifiers 

Eleven systems were considered, with ten of them based on 

the i-vector framework and with many of the systems using 

bottleneck features in some form. 

3.1.1. Bottleneck features  

The bottleneck features (BNF) used for the various systems 

are obtained by training a Deep Neural Network (DNN) using 

a seven hidden layer architecture. On these systems, all hidden 

layers have 1024 nodes except for the sixth layer which has 

either 64 or 80 nodes and a linear activation function that is 

used for extracting the BNFs. The output layers have varying 

compositions for the different systems and will be discussed 

for each system separately. Other features that were common 

across the systems include: 

 
 Processing speech window of 20 ms length with 10 ms 

shift. Mean subtraction is performed and low energy 

dither added to the signal to avoid digital zeros. 

 Mel-scale filterbank analysis is performed over the 

band 300-3140 Hz, resulting in 24 log-filterbank 

energies. RASTA filtering is applied to the log-energy 

filterbank trajectories. 

 Non-speech frames are gated out using speech activity 

detection marks derived from a GMM-based 

speech/non-speech detector. 

 Feature vectors are normalized to zero mean, unit 

variance by subtracting the mean and dividing by the 

standard deviation computed from either a 3 second 

window of speech frames or from the entire file. 

Systems employing shifted delta cepstral (SDC) 

features used the standard 7-1-3-7 configuration 

stacked with static cepstra to generate a 56-

dimensional vector. 

 To generate bottleneck features, DNNs were trained 

using PLP features (coefficients 0-12). The features 

were normalized to a standard normal distribution 

across each file. 
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3.1.2. Conventional bottleneck feature systems  

Two core bottleneck feature systems were developed 

following the architecture described above. The first 

bottleneck system, named BNF1, uses 1024 nodes in each 

hidden layer and a bottleneck layer of dimension 80. This 

DNN is trained using 90% of the Switchboard (SWB) phase 1 

dataset. The training for this DNN uses the Kaldi toolkit [2] to 

extract 4168 senone posteriors. The feature set used to train 

the network uses a stack of 21-frames of dimension 39 which 

includes 13 static cepstral coefficients plus both first and 

second derivatives. The bottleneck feature vectors obtained are 

normalized to follow a standard normal distribution and used 

to train a GMM-UBM [3] and subsequently generate a set of 

400-dimensional i-vectors. Additionally, this system employed 

data augmentation techniques using the scheme proposed by 

Ko [4]. The augmented data set was used to train the linear 

discriminant analysis (LDA) component and the within class 

covariance normalization (WCCN) matrix. Scores for this 

system were generated using cosine scoring. 

 

A second BNF system (BNF2) was also trained using a 

scheme similar to BNF1. In the case of BNF2, the DNN was 

trained using a 100-hour subset of the SWB data set and the 

bottleneck dimension was 64. In this case, the system training 

resulted in the extraction of 4199 senone posteriors. The 

architecture and parameters are the same as BNF1 with the 

exceptions described. 

3.2. DNN posteriors systems 

Another group of systems was trained using DNNs for direct 

computation of the sufficient statistics in lieu of using a 

GMM-UBM system. In this case, the systems use the DNN 

senone posteriors to compute sufficient statistics used to train 

the i-vector extractor. Under this general approach we 

considered four systems, all of which employ an i-vector 

framework and cosine distance scoring. 

3.2.1. Multinomial subspace systems 

Three of the systems evaluated (CNT1, CNT2, and CNT3) 

used the same framework as developed for the BNF1 system 

with a difference in the DNN architecture. In this case, 

although 4168 senones were also used, the architecture of the 

system uses hidden layer dimensions alternating between 2048 

and 1024 nodes. Posterior statistics are extracted for each 

hidden layer. Additionally, the subpace multinomial model is 

applied and an 800-dimensional space is ultimately used. 

 

The first system (CNT1) modeled all 4168 posteriors while 

the second system (CNT2) modeled 20 posteriors representing 

the 20 classes of interest among the 6 language clusters. The 

third multinomial subspace system (CNT3) used DNN 

posteriors and language class posteriors jointly. 

3.2.2. Statistics based system 

This system (STATS) follows the description for BNF2 but 

uses the 4199 senone posteriors along with the 56-dimensional 

shifted-delta-ceptral (SDC) features [5] to extract the first and 

second order statistics for i-vector extraction.  

3.3. Bayesian Unit Discovery (BAUD) 

The BAUD system is also a BNF system but it uses a different 

approach to determine the units by which the initial DNN 

targets are trained. In this case, instead of training the DNN 

using senone targets from the tri4a step of the Kaldi SWB 

recipe [2], this system trained its bottleneck features using 

targets from an unsupervised unit discovery process detailed 

below. The architecture for the DNN is the same as that for 

BNF2. 

 

The unsupervised unit discovery process is based on the work 

in Lee [6], but was subsequently re-implemented in Kaldi with 

a few simplifications to make the computation more tractable. 

The main idea is to learn phone-like units on speech without 

parallel text data. Each unit is represented by a 3-state HMM 

that emits acoustic feature vectors via a GMM. In Lee [6], 

everything was formulated in a Bayesian manner to take 

advantage of its self-regularizing model-selection properties, 

and inference was done via Gibbs sampling. In the faster re-

implementation, we used a more heuristic initialization, which 

included specifying the number of units to learn, and 

accumulated GMM statistics via maximum likelihood. 

 

We learned 100 units on all of the provided training data. This 

resulted in a large set of "phone sequences" from which we 

could train a speech recognizer in Kaldi. Carrying through to 

the tri2 step of the SWB recipe resulted in an acoustic model 

containing 2604 senones modeled using 30,000 Gaussians. 

The frame-level alignments for these senones were used to 

train the DNN for bottleneck feature extraction. 

3.4. Conventional SDC features system 

One system was included that used conventional SDC features 

in an i-vector framework [7] and is similar to the one 

submitted in LRE 2011. Processing of the speech signal is 

described in [8]. 

3.5. Pitch features 

Two systems that included pitch information were considered 

for this evaluation. The first pitch based system (PITCH1) 

used pitch stacked with SDC features using the system 

described in Section 3.4, and the second system (PITCH2) 

added pitch as input to the BNF2 system. The pitch features 

were generated on a per-cut basis. Praat [9] was used to 

calculate F0 and the corresponding voicing decision using a 10 

millisecond frame rate, and with the F0 range set to 65-400 

Hz. To mitigate the effects of pitch doubling and pitch 

halving, the highest and lowest 3% of F0 values were 

removed. The log of F0 was computed and its mean over the 

voiced frames of the cut was subtracted. Linear interpolation 

of log(F0) was performed through the unvoiced frames and 

those with the most extreme F0 values were removed. Delta-

log(F0) was calculated as the difference between the log(F0) 

value 3 frames forward and 3 frames back in time. The values 

of log(F0) and delta-log(F0) were stacked with the 

corresponding SDC frames, producing a 58 dimensional 

feature vector for the PITCH1 system. The PITCH2 system 

used values of log(F0) and delta-log(F0) stacked with the 

BNF2 system features. 
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3.6. Multi-lingual DNN 

All the systems described in Sections 3.1-3.5 were developed 

in the context of the fixed condition. In addition to those 

systems we also developed an additional bottleneck system for 

the open condition. The multi-lingual DNN system (MLBNF) 

developed for the open condition was inspired by the work in 

[10], where a multi-task DNN was trained using data from 5 

IARPA Babel languages (Cantonese, Pashto, Turkish, 

Tagalog, Vietnamese) as shown in Table 3. The DNN was 

trained using 60 hours of data randomly selected from each 

language for a total of 300 hours of data. The inputs for the 

DNN were the same stacked features used for the BNF2 

system. The DNN architecture is also similar to the BNF2 

system in that it has 7 layers of 1024 nodes each where the 

second to last layer is a 64 node linear bottleneck. However, 

for the multi-lingual DNN the last hidden layer is different for 

each of the five languages. Stochastic gradient descent training 

for the multi-lingual DNN proceeds by loading a mini-batch 

with data from each language in sequence until the average 

validation cost across all languages no longer decreases. 

 

Language IARPA Build Pack 

Cantonese IARPA-babel101b-v0.4c 

Pashto IARPA-babel104b-v0.bY 

Turkish IARPA-babel105b-v0.4 

Tagalog IARPA-babel106b-v0.2g 

Vietnamese IARPA-babel107b-v0.7 

TABLE 3. Babel languages used for training a multi-

lingual BNF. 

3.7. Fusion/Calibration 

As in previous evaluations [8], the backend stage consisted of 

a per-system calibration component that included duration 

normalization. The calibration stage is then followed by a 

linear fusion with a zero offset. The calibration stage used a 

discriminatively-trained (MMI) Gaussian with shared 

covariance for each system, followed by a multiclass logistic 

regression across systems to produce the final score. With the 

limited amount of data in the evaluation, the submitted system 

was trained on a combination of the train and development 

scores. 

To select the primary system we used a greedy approach to 

choose from among a maximum of 16 possible systems for 

the final system combination. System combinations were 

evaluated in three consecutive stages starting with a subset of 

the systems and then dropping and adding systems at each 

stage to select the best combination. 

4. Results and Discussion 

This section presents the results for the primary systems 

submitted for the 2015 NIST LRE, including both the open 

and fixed condition systems. 

4.1. Official NIST Submission 

Results for the fixed condition primary system are shown in 

Figure 1. The figure shows results for the primary system 

along with each of the individual systems that made it into the 

primary submission, and the optimal (oracle) fusion. The 

submission consisted of a fusion of five systems: BAUD, 

CNT1, BNF1, PITCH1 and STATS systems. This fusion was 

obtained by sweeping over all the systems developed for the 

evaluation and choosing the best compromise between 

performance and possible overtraining risk. The performance 

for the primary system had an overall cost of 0.176. Figure 1 

shows two performance bars, the performance of the 

submission across all six clusters (blue, left bars) and the 

performance of the system with the French cluster excluded 

(red, right bars). Additional comments on the performance of 

the system and the issues with the French cluster are included 

in Section 5. 

 

There are a number of observations of interest to be made 

about these results. First, the submission choice was very close 

to the performance possible with an optimum selection of 

systems for fusion given the developed systems. This result 

demonstrates that although the development set was not very 

good about predicting performance on the evaluation, the 

fusion strategy was a good predictor of which systems to 

combine. Second, the BNF1 system results in the best 

performance out of the five systems submitted with the BAUD 

system resulting in a close second. 

 

 

FIGURE 1. Fixed task performance breakout for 

submitted system. Overall performance across all six 

clusters is shown in blue (left bars) and performance 

with the French cluster excluded is shown in red (right 

bars). 

The open set condition submission performance breakout is 

shown in Figure 2, with overallperformance across all six 

clusters again shown in blue (left bars) and the performance 

with the French cluster excluded presented in red (right bars). 

For this condition, candidates included all systems considered 

for the fixed task along with the multi-lingual DNN bottleneck 

features system MLBNF. The performance for our submission 

resulted in an overall cost of 0.169. As in the case of the fixed 

condition, the performance of the primary submission is on par 

with the optimal possible combination of systems. Another 

observation of interest is that for the open task submission the 

multilingual BNF system MLBNF is the best performing 

system and replaces the BAUD system. 
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FIGURE 2. Open task system performance breakout. 

Overall performance across all six clusters is shown 

in blue (left bars) and performance with the French 

cluster excluded is shown in red (right bars). 

5. Discussion 

In this section we discuss some of the results obtained for the 

evaluation along with some of our observations and lessons 

learned. Topics include system development, duration 

analysis, performance on the French cluster, and our 

experience with the open set condition. 

5.1. Development Results 

First, we describe our development results to motivate some of 

the decisions discussed earlier. Figure 3 presents the results 

obtained on our development set for both the fixed and open 

set conditions. 

 

 

FIGURE 3. Fixed and open system per-cluster cost on 

development data. 

The results demonstrate that the system development process 

predicted good performance for all six clusters with English 

expected to be the cluster with the easiest discrimination task 

and Chinese and Iberian expected to be the hardest 

discrimination tasks. This result contrasts with those obtained 

by our systems on the evaluation data where French was the 

worst performing cluster followed by the Iberian and Chinese 

cluster. Our analysis to date suggests that most of the 

differences are related to unexpected channel mismatch 

compared to the development set. In particular limited 

representation of the evaluation channels on the development 

data for the most difficult clusters. 

5.2. French cluster performance 

Figure 4 shows the performance of our fixed primary 

submission system across each of the language clusters, 

French being of particular interest as the performance of our 

system is very poor and well below expectations. As shown in 

Table 1, the French cluster was composed of Haitian Creole 

and West African French. Anecdotally, the performance on 

this task was expected to be difficult but not random. 

 

 

FIGURE 4. Per-cluster cost for fixed set condition. 

Upon further investigation, we discovered that one of the main 

issues driving the performance degradation on the French 

cluster was the channel differences. During our system 

development process the data available for these classes had 

limited cross channel representation, while the data used on 

the evaluation resulted in a large cross channel testing 

scenario. To further clarify this point, a basis was formed 

using the i-vectors for the French cluster that included data 

from the male speakers in the development set (full and 

segments) and the evaluation set. The i-vectors were then 

projected onto this basis, with results for the first two 

dimensions, shown in Figure 5, demonstrating that there is a 

strong mismatch between the available training/development 

data and the evaluation data. The figure shows that data from 

conversational telephone speech (CTS) and broadcast sources 

(BNBS) form distinct clusters in the two-dimensional space 

and indicates that limited language discriminability is to be 

expected. 

 

During the NIST LRE15 workshop held on 8-9 December 

2015 it was noted that Haitian Creole has a range of spoken 

forms, with the more formal variety being more French-like 

and the informal variety much less so. Thus, the difference 

between CTS and BNBS performance may be a correlate of 

this variation rather than a pure channel or signal effect. 
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FIGURE 5. French male data projection onto two-

dimensional subspace using i-vectors from the 

development and evaluation sets. 

 

In contrast to the French cluster performance, we show in 

Figure 6 two-dimensional projections for the Slavic cluster, 

which was selected because it comprises two language classes 

that were readily distinguished. In this case, we can observe a 

very clear differentiation of the two languages (Polish and 

Russian) and see that the clusters can be separated by channel 

as well as by language class. 

 

 

FIGURE 6. Slavic male data projection into two-

dimensional subspace using i-vectors from the 

development and evaluation sets. 

5.3. Impact of duration 

In previous language evaluations NIST had explicitly included 

duration as part of the evaluation. In 2015 NIST did not 

include duration as a main factor to consider and provided the 

evaluation data as a single set with speech durations in the 

(nominal) 3-30 second range. Figure 7 presents the 

performance observed across the different clusters (French is 

excluded) for our core task submission. It is worth observing 

that, as expected, performance on current systems improves as 

the duration of the cut increases, with the saturation area 

around 15 seconds for most clusters. 

 

 

FIGURE 7. Per-cluster performance as a function of 

speech duration for the six clusters. 

5.4. Open set system 

The open set condition resembles the core condition of 

previous evaluations. One of the main observations from the 

development of the open condition systems in LRE 2015 was 

that adding additional data to the system training resulted in 

minor gains in performance compared to what had been our 

experience from previous evaluations. In fact adding all 

training data to our training resulted in some performance 

degradation. After additional experiments we tried to isolate 

the cases under which additional data produced performance 

improvements. Our experiments showed that adding data, one 

language at a time, improved performance for only the cases 

where data was added for Brazilian Portuguese, British 

English and Modern Standard Arabic. 

 

After final submission of the system we revisited the open 

condition training on the evaluation data. Surprisingly, and in 

contrast to the development results, using all available training 

data does result in improved performance on the evaluation 

set. The overall cost for the submitted system for the open 

condition was 0.168, while the post-evaluation system trained 

on all available data results in an overall cost of 0.117. 

 

In addition to the improved performance obtained on the post-

eval system two other interesting observations are noted. First, 

contrary to the results obtained on the submitted system, 

performance on the French cluster improves substantially in 

the post-eval system. This improvement is possibly due to the 

additional diversity in channels available on the augmented 

data set. Although the French cluster accounts for most of the 

improvement, the performance on other clusters also 

improves. A second observation is that PLDA scoring 

performs better than both WCCN and conventional cosine 

scoring. This result also differs from that obtained during the 

system development phase on both the fixed and open 

conditions. 

5.5. 20-language performance  

Another analysis explored the performance of our system 

using a 20-way closed set classification metric rather than 

Cavg as for the 2015 NIST LRE. Figure 8 shows the 

performance of our primary system as a 20-way classification 
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task. The axes show the 20 classes in the evaluation grouped 

by cluster. 

 

The structure on the plot in Figure 8 shows that the confusions 

appear in roughly rectangular shapes about the diagonal. This 

is expected as the majority of confusions for this data happen 

within individual language clusters. Note the large number of 

Haitian Creole evaluation segments misclassified as West 

African French, consistent with the analysis of Figure 5. 

 

FIGURE 8. Bubble plot of identification errors for the 

MITLL fixed task system. 

5.6. Historical language recognition performance 

As in previous evaluations, Figure 9 shows the historical 

language detection performance trend (EER%) for MITLL 

(core) submissions to NIST evaluations. Note that the values 

shown demonstrate the performance of the systems using the 

technology at the time of submission and do not reflect the 

performance that could be obtained on this data with state-of-

the-art systems. 

 
The performance observed for the 2015 LRE has a slightly 

higher EER for the 10 s and 30 s test segments than that 

obtained on recent evaluations. We hypothesize that the 

difference in performance can be due to the choice of target 

classes and the channel mismatch in some of the classes. 

 

6. Conclusion 

In this paper we have described the MITLL submission to the 

2015 NIST Language Recognition Evaluation. MITLL 

submissions included both a fixed condition submission and 

an open set submission. The submissions were mainly based 

on systems using an i-vector framework and resulted in an 

overall cost of 0.173 and 0.168 on the fixed and open tasks, 

respectively. In the future we intend to conduct additional 

analysis and listening to better understand the cluster 

confusions. 

 

This evaluation relied heavily on systems based on Deep 

Neural Networks and bottleneck features. In the future we 

expect the issue of channel robustness to be central to 

performance and anticipate that future work will focus on 

using the new techniques that have recently emerged that 

exploit DNN approaches for channel compensation. 
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FIGURE 9. Historical performance trend on NIST LREs from 

1996-2015. 
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