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Abstract

This paper considers automatic accent recognition system per-
formance in relation to the specific nature of the accent data.
This is of relevance to the forensic application, where an
accent recogniser may have a place in casework involving
various accent classification tasks with different challenges
attached. The study presented here is composed of two
main parts. Firstly, it examines the performance of five
different automatic accent recognition systems when distin-
guishing between geographically-proximate accents. Using
geographically-proximate accents is expected to challenge the
systems by increasing the degree of similarity between the vari-
eties we are trying to distinguish between: a type of task which
may be of use to forensic speech analysts. The second part of
the study is concerned with identifying the specific phonemes
which are important in a given accent recognition task, and
eliminating those which are not. Depending on the varieties we
are classifying, the phonemes which are most useful to the task
will vary. This study therefore integrates feature selection meth-
ods into the accent recognition system shown to be the highest
performer, the Y-ACCDIST-SVM system [1], to help to iden-
tify the most valuable speech segments and to increase accent
recognition rates.

1. Introduction

Various approaches to automatic accent recognition have been
explored by adopting a range of techniques from other areas
of speech technology. The motivation behind past research has
largely been to improve automatic speech recognition systems,
since great degrees of accent variation within a single language
can prove challenging for a system to contend with. For exam-
ple, the authors in [2] note that for Mandarin Chinese speech
recognition, the degree of accent variation leads to great drops
in speech recognition accuracy. By identifying the accent cat-
egory of a given speaker in the first instance, we can develop
adaptive speech recognition models, which are effectively tai-
lored to an accent’s pronunciation patterns. The degree of im-
provement for speech recognition of British English can be ob-
served in [3].

While automatic speech recognition is a large application,
and accent recognition has proved valuable, very little attention
has been devoted to automatic accent recognition for forensic
applications. Forensic speech scientists may benefit from the
output of an automatic accent recognition system when tend-
ing to speaker profiling tasks. Speaker profiling is the task of
drawing information about an unknown speaker from a record-
ing. This information might be a speaker’s age or geographical
origin. The authors in [4] offer some examples of case types
where speaker profiling might be useful to investigative parties.
These include identifying information about a speaker making
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a ransom telephone call.

The work presented in [1] begins to look more closely at
the use of a particular automatic accent recognition system ar-
chitecture for a forensic purpose. [1] presents a single text-
dependent system, the York ACCDIST-based Support Vector
Machine accent recognition system (Y-ACCDIST-SVM) and
applies it to, what might be termed, geographically-proximate
accents. It is based on the ACCDIST metric [5]. By testing it on
geographically-proximate accents, it is assumed that there are
greater degrees of similarity between the accents, and therefore
presenting it with a more challenging task. This angle separated
the research from previous accent recognition studies which
have largely focussed on distinguishing between speakers of ac-
cents with greater phonological distances between them.

The experiments presented in this paper aim to further ex-
plore the potential of automatic accent recognition systems for
forensic applications. The present paper builds on previous re-
search in two main ways:

1. It compares a number of different automatic accent
recognition systems on geographically-proximate ac-
cents to assess the sensitivity of these different accent
classifiers. This allows us to assess the strengths and
weaknesses of different systems.

2. Taking the highest-performing system, Y-ACCDIST-
SVM, this paper explores ways of improving recogni-
tion rates by identifying the most useful features in the
speech sample, given any collection of accents. The fea-
tures which are useful in distinguishing between accents
is expected to be dependent on the specific accents in
question: another aspect of accent recognition which is
likely to be affected by the data itself. Feature selec-
tion methods are therefore combined with Y-ACCDIST-
SVM to automatically identify the segmental combina-
tions which assist with classification the most.

Section 2 introduces how automatic accent recognition has
been approached in previous studies, while Section 3 outlines,
in more detail, the five selected automatic accent recognition
systems being tested in this study. The experiments compar-
ing these systems are presented in Section 4. Section 5 shows
the effects of applying feature selection methods to the Y-
ACCDIST-SVM system. Finally, Section 6 summarises the
work presented here and suggests further research directions
when considering automatic accent recognition for forensic ap-
plications.

2. Previous Work

2.1. Approaches to Automatic Accent Recognition

We can broadly split previous approaches to automatic accent
recognition into two types: Phonotactic and Acoustic.



2.1.1. Phonotactic Systems

Some past accent recognition systems have incorporated meth-
ods from Language Identification (LID). For LID, [6] com-
pared three Phone Recognition followed by Language Mod-
elling (PRLM) systems. In these sorts of systems, the phone se-
quence of the unknown speech sample is estimated by the phone
recogniser, and then using this sequence (and phone frequency
distribution), the likelihood of it appearing in each language in
the reference database is calculated. Using a PRLM-type sys-
tem, [7] classifies Arabic speakers into one of four broad dialect
groups: Iraqi Arabic, Gulf Arabic, Levantine Arabic and Egyp-
tian Arabic. They claim that these varieties are distinguishable
by the phone sequences of each variety and report a promising
Equal Error Rate (EER) of 6.0% in classification. Although this
type of system seems to work well for this particular task, it is
expected that this phonotactic encoding has little to offer a task
where the accents have a heightened level of similarity between
them. It is predicted that the phone sequences themselves are
too similar and that this type of difference would be too sub-
tle. It is suggested that more attention should be devoted to the
phonetic realisational differences when we are distinguishing
between more similar accent varieties.

2.1.2. Acoustic Systems

Rather than using information concerned with the presence, ab-
sence, frequency and order of phones (like phonotactic sys-
tems), acoustic systems are concerned with the specific acous-
tic values obtained from a speech sample. These systems in-
volve extracting acoustic representations of the speech samples
(e.g. Mel-Frequency Cepstral Coefficients (MFCCs)). Using
these representations, we can model and represent whole accent
classes in training, or single speech samples in testing. Past at-
tempts have trialled a GMM-UBM model to do this [8], and
more recently i-vectors have been implemented [9], [10]. Fi-
nally, some sort of classification strategy is put in place. Using
Maximum Likelihood (ML) estimation [11] can achieve this, or
indeed Support Vector Machines (SVMs) [12]. Section 3 gives
more detail on how these processes are integrated into systems.

2.1.3. Text-Dependent vs. Text-Independent Systems

Systems can also be divided into whether speech samples re-
quire an accompanying transcription (text-dependent), or not
(text-independent). The practical advantages of not needing
to provide a transcription are obvious, but for some applica-
tions and research questions, text-dependent systems may still
have a place. [8] compare a number of different accent recog-
nition systems, both text-independent and text-dependent. The
text-independent systems include a GMM-UBM system and a
GMM-SVM system, while their text-dependent systems include
a variation of the ACCDIST metric [?]. They developed and
tested two ACCDIST-based systems, both of which were par-
ticularly restrictive when it came to the nature of their text-
dependency, in that the unknown speaker is required to pro-
duce the same spoken content as the training speakers. This
limits the number of applications such a system can be used
for. It is no surprise, however, that these two systems achieved
the highest recognition rates, exceeding those obtained by the
text-independent systems. In this respect, [1] further developed
an ACCDIST-based system (Y-ACCDIST) which can allow for
content-mismatched data to be processed between unknown and
training speakers. However, it should be acknowledged that Y-
ACCDIST is still text-dependent in that input data require an
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accompanying transcription.

2.1.4. Comparing Systems

The experiments presented here compare five automatic ac-
cent recognition systems, which differ in their architectures
and pre-processing requirements. These will be compared
with similar systems which were developed in past studies and
tested on other corpora. Four similar systems to those which
were developed in [8] will be used (GMM-UBM, GMM-SVM,
ACCDIST-based Correlation, ACCDIST-based SVM), as well
as one from [13] (Phonological GMM-SVM). The systems in
[8] were tested on the Accents of the British Isles (ABI) cor-
pus [14], which comprises 14 different accents from across the
breadth of the British Isle. The system in [13], however, was
tested on a database of five Flemish varieties. The table below
displays the results from these past studies.

Table 1: Recognition rates generated by accent recognition sys-
tems in past studies.

‘ System | % Accuracy | No. classes |
GMM-UBM [3] 61.13 14
GMM-SVM [8] 76.11 14

Phon-GMM-SVM [13] 63.2 5
ACCDIST-based-Corr [8] 93.17 14
ACCDIST-based-SVM [8] 95.18 14

It is important to acknowledge the number of accents in-
volved in each of the studies. In [8], they were distinguish-
ing between 14 varieties dispersed across the British Isles. The
chance expectations of that study’s systems is therefore 7.1%,
and we can see from the table above that each of the different
architectures achieve rates which are well above this. We can
of course observe a spread of results across the systems with
the text-independent systems (GMM-UBM and GMM-SVM)
striking recognition rates which are much lower than the text-
dependent systems (the ACCDIST-based systems).

In the case of the Phonological-GMM-SVM system from
[13], the chance expectation attached to the result above is
20.0%, as their study involved distinguishing between only five
Flemish varieties. Given this, the result of 63.2% does not
seem as impressive. However, they claim that the varieties
they were distinguishing between were quite similar. Even
though Flanders is known to have very distinct dialects for such
a geographically-enclosed area, when speakers speak the stan-
dard language, differences between the groups are less promi-
nent. Performing accent recognition on these kinds of databases
could be useful to forensic applications. It is perhaps of inter-
est to assess how sensitive accent recognition systems can be to
varieties which are more alike.

This study will bring these different types of systems to
the AISEB corpus (Accent and Identity on the Scottish/English
Border corpus [15]). We will compare the results brought about
by these past experiments with those generated using variants
of these systems on the AISEB corpus.

3. A Comparison of
Automatic Accent Recognition Systems

This section outlines each of the five systems being compared.



3.1. System 1: GMM-UBM

A Universal Background Model (UBM) is trained using multi-
speaker speech data including all the accents involved. MFCCs
are extracted throughout the speakers’ speech samples (using
the HTK toolkit [16]). These are composed of 12 coefficients,
plus energy, and in addition, delta and acceleration coefficients
are appended to the vector, totalling to 39 elements. These are
extracted from 25ms windows of speech at overlapping 10ms
intervals. Accent-specific multi-speaker speech data for each
accent in the corpus is then introduced to the training process as
enrolment data. For each set of enrolment data, MFCCs are ex-
tracted and MAP adaptation [17] is applied to adapt an accent-
specific model: a representative accent-specific GMM. To clas-
sify a test speaker, the likelihood of the test speaker’s acoustic
features belonging to each of the adapted models is calculated.
The highest probability determines the speaker’s accent class.

Training Train
Data UBM
Enrolment MAP
Data adaptation -
class-specific
models
Test Calculate
Data likelihoods
Accent
Label

Figure 1: Flow diagram of a GMM-UBM system.

3.2. System 2: GMM-SVM

In the same way as System 1 above, a UBM is trained using
multi-accent, multi-speaker speech data. In the case of this sys-
tem, the enrolment data is speaker-specific, but still independent
of spoken content. Instead of adapting one single model to rep-
resent one accent, a model is adapted for each of the speakers
in the enrolment data. This leaves multiple GMMs representing
each accent. Taking each of these speaker-specific GMMs, for
each of the accent groups, the means are taken and concatenated
to form a vector, which represents each speaker. These are fed
into a Support Vector Machine (SVM) and effectively plotted in
multi-dimensional space, while all other speakers’ GMM means
of all other accent classes are also fed in to form a ‘one-against-
the-rest’ configuration. An optimal ‘hyperplane’ between the
accent class and ‘the rest’ is formed. On rotation, each accent
class forms an SVM this way. In testing, an unknown speaker’s
speech sample is used to adapt a model from the UBM and the
mean vector is introduced to each SVM formed for each accent
class. The accent label is determined by the clearest margin it
forms with the hyperplane.
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Figure 2: Flow diagram of a GMM-SVM system.

3.3. System 3: Phonological GMM-SVM

The training speakers’ speech samples, along with their ortho-
graphic transcriptions, for each of the accents involved are taken
and forced aligned. Using these alignments, a GMM is trained
to represent each phoneme for an individual speaker. All the
GMM means for each phoneme are concatenated to represent
the speaker’s pronunciation system in one long supervector. In
the same way as System 2, each of the training speakers’ rep-
resentative vectors are fed into a SVM. To classify an unknown
speaker, the speech sample and transcription are forced aligned
and subsequently used to train phoneme-specific GMMs. The
means of these GMMs are concatenated into a supervector and
introduced to the SVM to assign an accent label.

Train individual
phoneme-specific
speaker specific
GMMs

Speaker-specific

training data

Concatenate all GMM
means for each
speaker, forming a
speaker-specific
supervector

Support
Vector
Machine

)

Accent
Label

Test
Data

Figure 3: Flow diagram of a Phonological GMM-SVM system.

3.4. System 4: Y-ACCDIST-Correlation

An orthographic transcription and speech sample for each
speaker in an accent class are passed through a forced aligner.
The midpoint 12-element MFCC vector for each vowel phone is
extracted and an average midpoint MFCC vector is calculated



for each English vowel phoneme. A representative matrix is
formed by calculating the Euclidean distance between all vowel
phoneme pair combinations, which aim to capture telling intra-
speaker phonemic differences, indicative of an individual’s ac-
cent. For example, the vowels in foot and strut are more similar
for a typical Northern English English speaker than they are for
a typical Southern English English speaker. The Euclidean dis-
tance between these two vowel phonemes, then, is expected to
be smaller for the Northern speaker than it is for the Southern
speaker. The matrix is intended to capture these sorts of differ-
ences. For each accent class in the database, each speaker’s ma-
trix belonging to the group is taken and an average ACCDIST
matrix is calculated to represent that accent.

ae | uh | ah
ae 0 X X
_ Euclidean
vh | x 0 |{x o distance
N between foot
ah ¥ x 0 and strut
vowels

Figure 4: Illustration of part of an ACCDIST matrix.

For classification, an unknown speaker’s speech sample,
along with a transcription, is converted into a representative
ACCDIST matrix (in the way just described above). Pearson
product-moment correlation is calculated (as per [18]) between
the unknown speaker’s matrix and each of the representative
accent matrices. The unknown speaker’s accent label is deter-
mined by the accent class it generates the highest correlation
value with, which indicates a higher degree of similarity.

Training
Data

Forced
Alignment

Transcriptions \L

Produce
speaker-specific
ACCDIST matrices

!

Produce average
accent-specific
ACCDIST matrices

Test J/
Data \ Forced

Alignment
& convert

Calculate
correlations
between test
speaker
matrices and
candidate
accent-
specific
matrices

v

Accent
Label

—

/ to
Transcriptions ACCDIST
matrix

Figure 5: Flow diagram of the Y-ACCDIST correlation system.
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3.5. System 5: Y-ACCDIST-SVM

Speakers are processed as above (in Section 3.4) to model a rep-
resentative ACCDIST matrix for each speaker. The difference
between systems 4 and 5, however, lies in the classification pro-
cess. For each accent class, the speaker matrices belonging to
that class are fed into an SVM (in the same way as the GMM-
SVM system) and the ACCDIST matrices for all other speakers
of all other accents are fed in to form a ‘one-against-the-rest’
configuration. The accent classes rotate, so each becomes the
‘one’ in an SVM. An optimal hyperplane is formed for each
configuration between the accent class and ‘the rest’. When
classifying an unknown speech sample, it is converted into an
ACCDIST matrix and subsequently incorporated into each of
the SVMs produced for each accent class. The accent class la-
bel is decided based on the clearest margin formed between the
unknown speaker and the hyperplane in each of the SVMs.

Training
Data
Forced
Alignment
Transcriptions / ‘L
Produce
speaker-specific
ACCDIST matrices
Test Forced \|/
Data \ Alignment Support
& convert | Vector
to Machine
.. /1 accoist
Transcriptions matrix \L
Accent
Label

Figure 6: Flow diagram of the Y-ACCDIST-SVM system.

4. Experiments

All five systems described above were trained and tested using
the same data for comparison. The database used is described
in the section below.

4.1. The AISEB Corpus

The Accent and Identity on the Scottish/English Border
(AISEB) corpus [15] was used for the present study. It consists
of speakers from four locations along the Scottish English bor-
der: Berwick-upon-Tweed, Eyemouth, Carlisle and Gretna. For
the purposes of this study, a total of 120 speakers were used: 80
speakers were used to train each system, while 40 were used for
testing. The AISEB corpus provides a recorded wordlist, read-
ing passage and interview for each speaker. The results in this
study are generated using the reading passage recording only
(sampled at a rate of 44.1kHz). This amounted to approximately
3 minutes of speech per speaker.

4.2. Results

The recognition rates for the systems are displayed in Table 2.



Table 2: Recognition rates for each accent recognition system
classifying the 40 test AISEB speakers into one of four accent

groups (25% correct expected at chance).
‘ System | % Correct |
GMM-UBM 37.5
GMM-SVM 35.0
Phon-GMM-SVM 62.5
Y-ACCDIST-Corr 82.5
Y-ACCDIST-SVM 87.5

The text-independent systems (GMM-UBM and GMM-
SVM) perform above chance level, but not by much. We can
compare these results with those generated by similar systems
in past studies (in Table 1). We witness a similar hierarchy of
systems with regards to their relative performance. However,
the spread of performance appears to be much more dramatic
when applying these sorts of systems to the AISEB data. We
still seem to see a drop in performance by the ACCDIST-based
systems, but they appear to be much more robust to these kinds
of task. Also of note are the confusion matrices for each of the
systems displayed in the tables below:

Table 3: GMM-UBM system confusion matrix.

Location | Ber. Car. Eye. Gre.
Ber. 6 2 0 2
Car. 3 3 2 2
Eye. 2 2 5 1
Gre. 5 4 0 1

Table 4: GMM-SVM system confusion matrix

Location | Ber. Car. Eye. Gre.
Ber. 4 3 1 2
Car. 2 5 3 0
Eye. 1 5 3 1
Gre. 3 5 1 1

Table 5: Phon-GMM-SVM system confusion matrix

Location | Ber. Car. Eye. Gre.
Ber. 5 0 1 4
Car. 0 10 0 0
Eye. 1 0 8 1
Gre. 2 4 1 3

Table 6: Y-ACCDIST-Correlation system confusion matrix

Location | Ber. Car. Eye. Gre.
Ber. 9 1 0 0
Car. 2 7 0 1
Eye. 0 0 10 0
Gre. 0 1 2 7
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Table 7: Y- ACCDIST-SVM system confusion matrix

Location | Ber. Car. Eye. Gre.
Ber. 10 0 0 0
Car. 2 6 0 2
Eye. 0 0 10 0
Gre. 0 0 1 9

The small amount of test data used for these experiments

must be kept in mind. However, they may still be able to shed
light on some considerations for further developments on au-
tomatic accent recognition systems. One consideration is that
some accent groups might be more likely to be successfully
classified by one system over another. For example, in the ma-
trices above, all Carlisle speakers are correctly classified by the
Phon-GMM-SVM system, but as a group, Carlisle speakers are
correctly classified on fewer occasions by the two overall more
successful Y-ACCDIST systems. Other accent groups perhaps
show a preference for the Y-ACCDIST-based systems. To make
this observation more substantial, a greater pool of test speak-
ers would be required, but these observations still open up lines
of inquiry into system fusion, where different types of systems
are combined with the intention of improving overall recogni-
tion rate. One way in which fusion might be done is by using
multi-class linear logistic regression (as per [8]’s acoustic-fused
accent recognition system), but a much larger dataset would be
required.

5. Feature Selection

Another aspect we can assume is affected by the data, or spe-
cific accent varieties involved, is the particular segmental com-
bination which would be most valuable to a given accent clas-
sification task. In their accent classification experiments on
Flemish accents, [13] applied feature selection methods to a
text-dependent GMM-SVM system, seeing an improvement
in overall performance. Two feature selection methods they
used were one-way ANOVA and SVM-RFE (Support Vector
Machine Recursive Feature Elimination). Taking the highest-
performing accent recognition system from the experiments
above (Y-ACCDIST-SVM), the descriptions below will outline
how these two methods are applied to the Y-ACCDIST matrices
before the final SVM classification stage takes place.

5.1. Analysis of Variance (ANOVA)

ACCDIST matrices for the training speakers are formed using
both vowels and consonants. For each accent involved, the in-
dividual speaker matrices of that accent are grouped together to
form an average accent matrix and passed through the one-way
ANOVA. The individual elements of each of the Y-ACCDIST
matrices are then ranked according to how statistically signif-
icant they are, indicated by their p-value. This suggests how
much distinctive value the particular element, i.e. the specific
similarity relationship between the two phonemes, brings to
distinguishing between the varieties. A selection of only the
top-ranked elements can then be introduced to the classification
process.

5.2. SVM-RFE

This method uses classification performance to assess the ef-
fect of each feature involved in a process. The starting point
involves including all Y-ACCDIST matrix elements (all vowels



and consonants were included, as with the ANOVA method). A
SVM is trained in the usual way and, one by one, each feature
of the Y-ACCDIST matrix is removed and classification perfor-
mance is monitored. The feature which improved the system’s
performance the most through its absence is ranked as the least
valuable feature to the task. It is then removed from the rest of
the process and the RFE continues to identify the least valuable
matrix element for each iteration. The result is a ranked list of
Y-ACCDIST matrix elements in order of distinctive potential
for the given accent recognition task.

5.3. Experiments

The effects of these methods were measured via the accent
recognition performance of the Y-ACCDIST-SVM system. AC-
CDIST matrices for the training speakers of each accent were
formed using all the vowels and consonants in the phoneme in-
ventory. The baseline classification rate in this configuration
is 80.8% correct, contrasting with the Y-ACCDIST-SVM result
presented above, where only vowels were used (86.7% correct).

In increments of five, the top n matrix elements, ranked by
each feature selection method were the only elements which
represented each speaker’s accent to form an ACCDIST matrix.
These reduced ACCDIST matrices were then fed into the SVM
classifier and tests were conducted as normal. These recogni-
tion rates, where increasing numbers of matrix elements are
used (along the x-axis), are shown in the graph below.

110 = No. correct

B
= when
B including
i} I [
i 105 ‘ all features
5] ~— Na. carrect
L]
g 100 NL - SVM-
o Ay RFE
g _\I \W’ qgl I t
= ] . LA "N a. correc
8 9 ] Ay, _ANOVA
8
S |
=
90
150 300 450 600 750
No. Features
Figure 7: Graph to show recognition performance of Y-

ACCDIST-SVM when varying the numbers of the top-ranked
Y-ACCDIST matrix elements, determined by ANOVA and SVM-
RFE.

The horizontal line is the baseline recognition level of this
accent recognition task when all vowels and consonants are pro-
cessed through the system (80.8% correct).

We can witness the two feature selection methods behav-
ing slightly differently. SVM-RFE seems to more consistently
achieve a recognition rate above baseline, whereas ANOVA
achieves the highest recognition rate overall (89.2% correct).
This is achieved by only using the top 80 ranked matrix ele-
ments.

Obviously, these feature selection methods have been im-
plemented with the primary intention of improving recognition
rates. However, this feature may be useful to forensic ana-
lysts, as well as to sociophonetic research. These methods offer
an improvement to overall performance, and so it is assumed
that these methods are identifying the most useful segmental
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features. This might be valuable when we are dealing with
unfamiliar or particularly under-researched varieties. These
techniques might be able to provide a new way of screening
databases of accent varieties.

6. Summary and Discussion

The first part of this paper has revealed a broad spectrum
of results when five different systems (text-dependent and
text-independent architectures) were tested on geographically-
proximate accents. A comparison of these results with past
studies confirms that we cannot assume that recognition results
generated from one corpus will be reflected when the same sys-
tems are tested on another. It has been shown that some sys-
tem types suffer more than others when challenged by a set of
more similar accent varieties. However, it might be the case
that when the systems are faced with other types of challenges
(e.g. degraded and mismatched speech data, some systems may
do better than others. This opens up a number of avenues for
further research.

The second part of this paper focussed on ways in which
we might be able to automatically identify Y-ACCDIST matrix
elements (therefore phoneme pair distances) are the most useful
in a given accent classification task. Experiments showed that
by statistically eliminating the lower-ranking matrix elements,
classification rate improves. It might be the case that other
methods of feature selection may be better for this purpose. Fur-
ther exploration into alternative feature selection methods might
therefore give way to higher recognition rates.

While the current paper has shed light on aspects we should
bear in mind when applying such systems to a corpus, and
also uncovered additional strategies which can improve per-
formance, the data used are still at a distance from the reali-
ties faced by forensic analysts. The data used here were good-
quality reading passage recordings. To put automatic recogni-
tion systems to the test, further research must reflect the sorts
of tasks faced by forensic speech scientists in real-life case-
work. In future research, a greater focus will therefore be on
how automatic accent recognition systems perform on content-
mismatched speech data (spontaneous speech data), rather than
using reading passage data. The comparison of systems should
also include an i-vector classification system, similar to those
presented in [9]. Additionally, degraded recordings of tele-
phone quality will also be used for testing.
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