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Abstract 

In this paper we develop a simple mathematical model for 

reducing speaker recognition noise bias in the i-vector space. 

The method was successfully tested on two different databases 

covering distinct microphones and background noise 

scenarios. Substantial reduction in score variability was 

attained across distinct evaluation conditions which is 

particularly important in forensic applications. Although 

originally designed for addressing additive noise, we show that 

under certain circumstances the proposed method incidentally 

alleviates convolutive nuisance as well. 

Index Terms: speaker recognition, forensics, noise 

robustness, score compensation  

1. Introduction 

It is widely known that noise is one of the factors which 

significantly contribute to performance degradation in speaker 

recognition. Generally, noise can be categorized either as 

additive or convolutive. While the recording environment is 

usually responsible for the additive noise, convolutive noise is 

rooted on peculiarities of distinct microphones and 

transmitting channels. 

Nuisance issues are presently being accentuated with the 

advent of numerous models of smartphones and mini-tape 

recorders widely disseminated in the market. The prompt 

availability of these devices leads to the production of 

recordings accompanied by a countless combination of 

microphone and background nuisance. This scenario poses a 

serious challenge to applications demanding calibrated 

recognition scores such as in forensics. In this regard, 

collecting specific reference populations matching this 

multiplicity of model\test nuisance patterns is impractical. 

Methods for compensating score bias are required to alleviate 

the requests of precise reference data reflecting each specific 

recording scenario. 

State-of-the-art speaker recognition is based on mapping the 

speech signals into a high-level feature vector space, followed 

by the application of linear compensation and then computing 

vector similarity. Examples of such high-level vector 

representations are GMM supervectors and i-vectors [1]. 

Research efforts have been focusing on reducing the effect of 

handset/channel mismatch. Compensation techniques 

addressing the feature, model and score domains have been 

proposed [2]. In particular, techniques such as Nuisance 

Attribute Projection (NAP) [3], Joint Factor Analysis [4] and 

Probabilistic Linear Discriminant Analysis (PLDA) [5] were 

developed to address this problem.  

In this paper, we propose a model for reducing the 

recognition score bias in the i-vector domain that can be 

applied as a supplementary noise compensation layer. The 

method relies on non-speech portions of the signal to estimate 

noise i-vectors in order to predict the noise impact on the i-

vector space. The recognition score is then compensated using 

the estimated bias. Note that our method differs from common 

data-driven approaches (such as [6]) as we do not explicitly 

denoise the i-vectors. 

The paper is organized as follows. In Session 2, we develop 

the theoretical foundations of the model. In Session 3, we 

report validation experiments. Session 4 suggests a novel 

quality measure for speech signals directly inspired by the 

proposed approach. Conclusions and future research are 

presented in Session 5.  

2. Model  

When speech is captured by some recording device, the signal 

is modified by the transmission channel between talker and 

microphone. The channel is a general entity fusing several 

factors such as the effect of the acoustic environment, 

microphone type and location, and recording device settings. 

In addition, there may be further degradations by the 

background noise. The whole process may be expressed as 

 

                                           (1) 

 

where Y(t) and X(t) are the observed and clean speech signals 

respectively, H(t) is a filter representing the convolutive 

slowly-varying channel effects, N(t) denotes the additive 

background noise, and the * operator represents convolution. 

The observed signal is somewhat distorted and clearly impacts 

intelligibility and speech/speaker recognition applications. 

In particular, it can be shown [7] that the cepstrum of the 

corrupted speech can be modeled by the sum of the clean 

speech, channel filter and (a function of the) additive noise 

cepstra. In this paper, however, we circumvent explicit 

estimation of the noise components, and ultimately tackle the 

score bias due to underlying noise effects at the i-vector space. 

Our proposed model described below directly addresses 

additive noise components (N) although convolutive nuisance 

(H) is incidentally approached as well. The fact that channel 

characteristics are still being modeled by background noise 

can be understood as follows [8]. The non-speech spectrum 

can be modeled as the sum of the spontaneous activity of the 

channel and the transmitted background noise. Without further 

knowledge about these two components, non-speech portions 

of the signal cannot be used to obtain a reliable estimation of 

the channel transfer function itself, although they still capture 

channel information to some extent. 

Assuming   proper channel compensation, we redefine (1), 

eliminating H(t). The observed signal is expressed as follows. 
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                .                            (2) 

      

We define α (a kind of inverse signal-to-noise ratio (SNR)), to 

be the ratio of the standard deviations of the noise amplitude 

and the observed signal amplitude (not the clean signal 

amplitude): 

 

  
    

    
  .                                    (3) 

 

In the i-vector framework, Y, X and N are mapped into y, x and 

n respectively. We approximate the observed i-vector y as a 

linear function of the clean i-vector x; the noise i-vector n, 

estimated on non-speech frames of y; and  . Note that for the 

clean condition ( =0) we obtain y=x; for an extremely noisy 

condition ( =1) we obtain y=n; and for a SNR of 0 dB ( =0.5) 

we obtain y=0.5x+0.5n. Our model therefore assumes that the 

observed i-vector y is the following weighted average between 

the desired i-vector x and the noise i-vector n:  

 

                                         (4) 

 

We use the cosine distance to measure the similarity 

between i-vectors. The cosine distance between observed i-

vectors y1 and y2 is given by  

 

        
     

        
                               (5) 

 

where • represents the dot product between y1 and y2. Using 

(4) and after some algebra, we can express the similarity 

between desired vectors x1 and x2 in terms of the observed 

similarity         and the respective noise i-vectors n1 and n2, 

with noise levels α1 and α2: 

 

                                              (6) 

 

where 

   
 

            
                                  (7) 

 

is a multiplicative bias term that compensates for the drop in 

variance of the signals due to the added noise and 

 

   
                         

                    
                        (8) 

 

is the additive bias component. c2 itself can be further parsed 

into a cross-term relating the observed signals and their 

background noise signals and a diagonal term tying the two 

noise signals. (Note that our method is invalid when α1 or α2 is 

close to unity). 

We assume that |y| |x| since we target setups with relatively 

high SNRs where α is small and x and n are fairly orthogonal, 

implying that y should be a slightly rotated version of x. 

3. Experiments 

The experiments performed in this work are based on two 

databases, each one focusing on either additive or convolutive 

noise. The main database covering essentially the additive 

noise scenario is the DAPS (Device and Produced Speech) 

Dataset [9], which is a collection of studio speech recordings 

on tablet and smartphone devices in real world environments. 

The second database is a collection of several distinct 

microphone recordings extracted from the NIST 2005 Speaker 

Recognition Eval (SRE) [10], thus mainly focusing on channel 

nuisance (though additive noise is also an issue). 

3.1. Protocols 

3.1.1. DAPS 

The DAPS dataset consists of 10 male speakers reading 5 

excerpts each from public domain books. The recordings were 

done in a professional recording studio. Multiple versions of 

the data were created from these initial recordings. In the first 

version, a professional sound engineer applied audio effects to 

create production quality speech. In the other versions, the 

initial recordings were played through a high quality 

loudspeaker in real world environments and recorded onto one 

of three consumer devices, yielding a total of 12 device-noise 

conditions. These conditions are listed in Table 1 below. We 

create 2600 target trials and 23400 impostor trials, where 

enrollment is done on the original studio recordings, and 

testing is equally distributed among the distinct produced 

conditions. 

3.1.2. NIST 

The NIST benchmark is based on 1200+ recordings from 46 

speakers in eight auxiliary microphones extracted from the 

NIST 2005 SRE.  We benchmarked each of the microphones, 

trialing its recordings (models) against the other microphone 

recordings (tests), leading to distinct conditions containing 

about 6000 trials equally distributed between targets and 

impostors. 

3.2. System 

The speaker recognition system used in these experiments is 

an i-vector based system. The feature set consists of 13 Mel-

cepstral coefficients appended by their differentiates. 

Sufficient statistics for i-vector extraction are derived from a 

512 dimensional GMM. Following a 400-length i-vector 

extraction, linear discriminant analysis (LDA) is applied [1], 

compressing the i-vector dimension to 200. (No further 

channel compensation operations such as WCNN are applied.) 

Voice activity detection was performed using a phoneme 

recognizer [11] and scoring is implemented through cosine 

distance between model and test vectors, as discussed. The 

system was trained with telephone data from NIST 2004, 2006 

and 2008 evaluations, meaning that it is absolutely not 

optimized for the kind of data used in our experiments. This is 

particularly motivating in this research, since it reflects the 

complexity of speaker recognition applications such as 

forensics, dealing with mismatching of development and 

application data.  

3.3. Results for the DAPS evaluation 

Figure 1 displays the histograms of the pooled target scores 

obtained for the DAPS benchmark before and after bias 

compensation using the model described above. We note that 

the observed (biased) score distribution is clearly multi-modal. 

On the other hand, the estimated desired (unbiased) score 
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distribution resembles a Gaussian shape. 

In addition to score compensation, we investigated the 

effects of classical score normalization on both biased and 

compensated scores using t-norm [12]. (Although symmetrical 

scoring is being used, model i-vectors are clean recordings in 

these experiments and ignored for score normalization 

purposes.) The reference population for score normalization 

was obtained from a pool of about 200 tabletop- and body-

microphone recordings from the NIST 2002 multi-modal 

evaluation development data [13]. Figure 2 depicts the 

distributions of the t-normed target scores before and after 

compensation. A visual inspection of Figures 1 and 2 suggests 

that, comparing to bias compensation, score normalization has 

a secondary effect on reducing the multi-modality caused by 

trial mismatch. 

Next, we will show that, essentially, the impact of score 

compensation/normalization schemes was on decreasing the 

score variability across the different conditions, rather than 

individual performance improvement. Table 1 shows 

performance in terms of Equal Error Rate (EER) for all the 

conditions and setups. (A similar trend is observed concerning 

NIST's Detection Cost Function (DCF) and therefore not 

presented.) In addition, performance figures for the pooled 

trials (using a single threshold for all the conditions) in terms 

of EER and NIST's (old) minimal DCF are listed in Table 2 

for the different setups described. By contrasting Tables 1 and 

2, we observe that although the performances for individual 

channels (Table 1) were barely affected by the 

compensation/normalization setups, significant improvement 

was achieved in stabilizing the score variability across the 

pooled conditions (Table 2). A direct implication of this 

finding is in reducing the dependence on elaborating precise 

reference score distributions for LLR estimation and 

calibration. 

A further confirmation of the positive impact of the 

proposed compensation scheme on score stability is suggested 

by the Cllr cost function [14], as follows. We investigated a 

prospective situation in which scores obtained within a certain 

condition are calibrated using scores derived from other 

conditions. Particularly, for each condition, we calculated Cllr 

values based on calibration parameters obtained from each of 

the other conditions. We estimated the overall mean and 

standard deviation of these Cllr values across all conditions. In 

fact, since the conditions involving the balcony background 

display relative low detection performance with respect to the 

other conditions, the above Cllr statistics were calculated for 

two partitions, either including the balcony conditions ("High-

noise") or excluding these conditions ("Low-noise"). 

This experiment was performed for the t-normed biased and 

unbiased setups and results are shown in Table 3. It can be 

seen that for the t-norm unbiased setup, the compensated Cllrs 

are consistently lower and more stable across different 

calibration conditions; and especially concerning the high-

noise scenario, for which calibration data is poorly matched. 

3.4. Results for the NIST evaluation 

In this subsection, we assess the proposed compensation 

model on the NIST microphone database. In fact, a naive 

application of our compensation scheme on this database 

actually led to a slight degradation in accuracy. This 

degradation can be explained by poor SNR assessment 

required for estimating the amount of compensation to be 

applied in each trial, as following. 

 

Figure 1: Histograms of the pooled target scores 
before and after bias compensation. 

 

Figure 2: Histograms of the pooled t-normed target 
scores before and after bias compensation. 

Table 1. EERs for biased ("bias"), t-normed-biased 

("b+tnorm"), unbiased ("unbias") and t-normed-

unbiased ("ub+tnorm") setups across all conditions. 

Condition 
EER (%) 

bias b+tnorm unbias ub+tnorm 
ipad_balcony1 14.4 15.5 15.3 16.1 

ipad_bedroom1 0.6 1.0 0.5 1.4 

ipad_confroom1 0.5 1.0 0.5 1.0 

ipad_confroom2 0 0 0 0 

ipad_livingroom1 0.1 0.9 0.4 0.9 

ipad_office1 2.9 2.0 2.9 2.0 

ipad_office2 4.5 5.4 4.4 5.5 

ipadflat_confroom1 1.1 0.9 1.0 1.0 

ipadflat_office1 1.7 1.0 1.9 1.1 

iphone_balcony1 18.1 20.5 16.8 18.0 

iphone_bedroom1 1.5 2.1 1.3 2.0 

iphone_livingroom1 4.5 4.0 4.5 4.0 

Produced 0 0.5 0 0.5 

Table 2. Pooled trials performance for distinct setups. 

Setup EER (%) DCF (x104) 

Biased 16.0 438 

Biased+tnorm 14.0 419 

Unbiased 10.7 375 

Unbiased+tnorm 9.1 355 
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Table 3. Biased and unbiased Cllr statistics for low- 

and high- noise settings 

Setup 
Cllr mean ± std 

(Low-noise) 

Cllr mean ± std 

(High-noise) 

Biased+tnorm 0.60 ± 0.93 1.24 ± 2.07 

Unbiased+tnorm 0.52 ± 0.84 0.70 ± 0.97 

 

 

Figure 3. DCF improvement using fixed SNRs 

estimates (1/α) for the individual microphones and for 

the pooled trials. 

Initially, the current VAD actually introduced a certain amount 

of misclassified speech/non-speech excerpts in this 

experiment. Secondly, SNR ranges for different microphones 

were observed to be highly overlapping, as opposed to SNR 

values obtained for the DAPS database, which were observed 

to be idiosyncratic to different scenarios. Finally, our model 

does not account for uncompensated convolutive noise which 

is significant for the NIST dataset. Therefore, for the moment, 

lacking a more appropriate noise assessment strategy 

addressing additive and convolutive effects, we avoid SNR 

estimation, using pre-fixed SNR values in our compensation 

scheme for all NIST trials. Score normalization using t-norm 

as described also led to a slight decrease in performance in this 

experiment. A more suitable reference population should be 

selected and therefore normalization and calibration results for 

this database are not reported.  

Figure 3 depicts the relative DCF improvement attained 

through score compensation for different SNR settings (1/α). 

(EER gains were marginal.) We show both the average gains 

across the individual microphone evaluations and the gains for 

the pooled trials. It can be seen that both curves show similar 

behavior, contrary to the DAPS experiment, where 

compensation benefits were obtained for the pooled trials 

performance rather than for the individual evaluations. This 

can be explained by the use of a fixed SNR which precludes 

differential bias compensation across different channels. 

Nevertheless, since the noise vector incidentally captures 

channel effects, general performance gains can still be attained 

for moderate SNR presets. 

4. Vector-space SNR 

The quality of speech recordings, being one of the major 

sources of bias in the recognition scores, can be used to 

identify unsuitable trials [15-18]. Reliable quality measures 

play an important role in applications such as forensics where 

potential bias is critical and must be identified in advance. 

Table 4. Correlation between trial quality and recognition 

score, using distinct quality formulations 

Trial quality measurement 
{quality x score} correlation 

Target trials Impostor trials 

             0.67 0.36 

      0.76 0.46 

                  0.80 0.48 

 

 

As opposed to traditional SNR, in the context of this 

research, we propose a vectorial SNR quality assessment for a 

trial, expressed by the dot product between the model and test 

noise vectors, n1 and n2: 

 

                                               (9) 

 

The motivation for the vector-based SNR assessment is that 

it should reflect more accurately the ultimate noise impact on 

the i-vector space and in particular on the recognition score. 

Given a speaker recognition trial involving similar noise 

patterns, their corresponding noise i-vectors, being high 

correlated, will positively bias the recognition score, as 

discussed in Section 2. 

In order to illustrate this point, we calculated the correlation 

between the uncompensated pooled scores and the 

corresponding trial quality measures. Trial quality was 

expressed through different formulations involving the 

traditional and vectorial SNR measurements. In particular, we 

used the inverse of c1 in (7) which reflects the combined SNR 

of the trial; SNRv, defined in (9); and, in addition, the product 

of these two measurements. Table 4 summarizes the 

correlation results for the distinct quality measurements for 

target and impostor trials in the DAPS evaluation. These 

correlation levels express a relatively strong relation between 

the test SNR (due to different test conditions) and the raw 

recognition score. In these experiments, the proposed vectorial 

SNR measure outperformed the standard SNR as a quality 

measure for the speech samples.  

5. Conclusions and Future Research 

We presented a simple model for compensating noise score 

bias in the i-vector space for speaker recognition.  The 

methodology relies on the direct parameterization of 

background noise excerpts in the i-vector space. We showed 

that noise can be successfully modeled as an interfering vector 

component in the i-vector space. The estimated noise vector 

can then be used to compensate the recognition score. Our 

score compensation scheme weights the amount of noise 

reduction to be applied according to the estimated SNR on the 

trial signals. Although the model was originally designed to 

tackle additive noise, our experiments suggested that channel 

noise could be indirectly mitigated as well. 

In addition, we evaluated the usage of noise i-vectors in a 

more reliable quality measure for recognition trials, in 

comparison with regular SNR assessment. Our results showed 

a better correlation between raw recognition scores and the 

vectorial noise measurements, in contrast with regular SNR. 

        Encouraging results show that our method is able to 

significantly decrease the score variability across different 

conditions, which is very important for LLR calculation and 

calibration. Our current results are based on cosine similarity 

between i-vectors. In fact, other state-of-the-art scoring 
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techniques such as PLDA should be also investigated. 

In part, our experiments emphasized the need of carefully 

selecting suitable reference populations for score 

normalization and calibration in mismatched conditions, as 

typically found in forensic applications [19]. In this regard, 

note that our method, not being data-driven, may be well 

suited for uncontrolled scenarios. 

Two distinct databases comprising various noise sources 

were used in the experiments. The databases replicate a variety 

of scenarios emulating human-machine interaction. 

Nevertheless, extensive evaluation should be done in order to 

comprehensively assess the methodology and the various 

theoretical assumptions involved. In particular, convolutional 

noise assessment should be formally integrated into this 

framework. 
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