Channel Compensation for Speaker Recognition Using MAP Adapted PLDA and Denoising DNNs

Frederick Richardson, Brian Nemsick and Douglas Reynolds

Odyssey 2016

June 22, 2016

This work was sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

- Multi-channel speaker recognition using Mixer data
- Baseline i-vector system
- MAP adapted PLDA
- DNN channel compensation
- Hybrid i-vector system
- Results
- Conclusions

Microphone Speaker Recognition

- Telephone systems generally perform poorly on mic data
- We look at two approaches to address this problem:
 - Adapting telephone hyper parameters to microphone data
 - Transforming microphone data to look like telephone data

MAP adapted PLDA

- I-vectors are adapted
- Small performance gain
- Calibration issues
- Can use standard i-vectors

 $\Sigma_{\text{adapt}} = \lambda \Sigma_{\text{tel}} + (1 - \lambda) \Sigma_{\text{mic}}$

DNN enhancement

- Features are transformed
- Substantial performance gain
- Robust / better calibrated

• DNN enhancement performs better than MAP adaptation

- Telephone data used to train speaker recognition system
 - Switchboard 1 and 2
 - 3100 speakers, 10 sessions
- Two corpora used in this work:

Mixer 2

- 2004 LDC collection
- 8 microphones + telephone
- Conversational speech
- 240 speakers, 4 sessions
- Used for development

Mixer 6

- 2008 LDC collection
- 14 microphones + telephone
- Conversations and interviews
- 540 speakers, 2 sessions
- Used for evaluation
- Both are parallel microphone corpora
- Rooms and speakers are different in each collection
 - Evaluating on unseen Mixer 6 channel conditions

Mixer 1 and 2 (train)

Chan	Microphone
01	AT3035 (Audio Technica Studio Mic)
02	MX418S (Shure Gooseneck Mic)
03	Crown PZM Soundgrabber II
04	AT Pro45 (Audio Technica Hanging Mic)
05	Jabra Cellphone Earwrap Mic
06	Motorola Cellphone Earbud
07	Olympus Pearlcorder
08	Radio Shack Computer Desktop Mic

- All 8 Mixer 2 mics used
- 6 mics from Mixer 6
 - Selected by distance (green)
 - Only evaluate same mic trials
 - (same mic for enrollment and test)

Mixer 6 (eval)

Chan	Microphone	Distance
02	Subject Lavalier	8
04	Podium Mic	17
10	R0DE NT6	21
05	PZM Mic	22
06	AT3035 Studio Mic	22
08	Panasonic Camcorder	28
11	Samson C01U	28
14	Lightspeed Headset On	34
07	AT Pro45 Hanging Mic	62
01	Interviewer Lavalier	77
03	Interviewer Headmic	77
12	AT815b Shotgun Mic	84
13	Acoust Array Imagic	110
09	R0DE NT6	124

- All system trained on Switchboard 1 and 2 telephone speech
- I-vector PLDA system used for all experiments
- All systems use similar configuration:
 - 2048 Gaussian mixtures, 600 dimensional i-vectors
- Baseline system uses 40 MFCCs (including 20 deltas)

Mixer 6 Microphone Results

SRE10 (CTS) vs Mixer 6 (MIC)

Test	EER	Min DCF
SRE10	5.77	0.662
Mixer 6 AVG	11.5	0.728
Mixer 6 POOL	18.8	0.875

- Switchboard trained system
- AVG uses threshold per channel
- POOL uses only one threshold
 - Reflects channel calibration
 - More practical
- Remaining results will use POOL

Baseline performs poorly (AVG) and is poorly calibrated (POOL)

MAP Adapted PLDA Performance

MAP Adapted PLDA – Tuning Lambda

Presentation Name - 10 Author Initials MM/DD/YY

- Another approach to enhancement is to use a DNN
- The DNN is trained as a regression
- Parallel clean and noisy data is needed for this
- Objective is to reconstructed clean data from a noisy version

- LDC Mixer data was collected over microphones in a room
- Different mics placed in different locations
- Clean data comes from telephone handset
- Expensive approach limited to specific rooms and mics

Channel Compensation I-vector System

- DNN trained using Mixer 2 parallel data
- DNN has the following architecture
 - 40 MFCCs (which includes 20 delta MFCCs)
 - 5 layers and 2048 nodes / layer (5 x 2048)
 - 21 frame input (+/- 10 frames around center frame)
 - 1 frame output (center frame of clean channel)
 - Input is either clean or one of 8 noisy parallel versions

DNN Feature Enhancement Performance

- We found several things that impact performance:
- Log Mel frequency banks these did not work as well as MFCCs
- Mean and variance normalization of input and output is critical
- DNN architecture has a big impact
- 2048 x 5 (nodes x layers) is best performing
 - But is much more expensive to train than 1024 x 5

DNN Arch	EER	Min DCF
512 x 5	11.4	0.711
1024 x 5	10.3	0.667
2048 x 5	8.16	0.633

POOL Mixer 6 Performance

- Map adapted PLDA does not perform well on telephone data
- DNN compensation gives a gain on telephone data
 - Almost 10% relative gain
- DNN compensation can be used without channel detection

SRE10 Telephone Performance

Task	EER	DCF
Baseline	5.77	0.662
MAP adapt PLDA	11.9	0.824
2048x5 DNN	5.20	0.615

- DNN channel compensation works very well
 - 28% reduction in Min DCF, 49% reduction in EER
- No loss on telephone data
 - Actually a small gain (~10%)
 - No need to detect channel or switch front-ends
- MAP adapted PLDA does not work as well
 - Gains at EER but does not improve min DCF
 - Performance issues on telephone data
 - But... easy to implement only uses i-vectors
- Note that real parallel data is expensive to collect
 - Synthetic parallel data would be much more practical