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• Multi-channel speaker recognition using Mixer data 
• Baseline i-vector system 
• MAP adapted PLDA 
• DNN channel compensation 
• Hybrid i-vector system 
• Results 
• Conclusions 
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• Telephone systems generally perform poorly on mic data 
• We look at two approaches to address this problem: 

– Adapting telephone hyper parameters to microphone data 
– Transforming microphone data to look like telephone data 

Microphone Speaker Recognition 
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Channel Compensation Approaches 

DNN enhancement 
- Features are transformed 
- Substantial performance gain 
- Robust / better calibrated 

Noisy Clean 

• DNN enhancement performs better than MAP adaptation 



Presentation Name - 5 
Author Initials  MM/DD/YY 

• Telephone data used to train speaker recognition system 
– Switchboard 1 and 2  
– 3100 speakers, 10 sessions 

• Two corpora used in this work: 
Mixer 2  

– 2004 LDC collection 
– 8 microphones + telephone 
– Conversational speech 
– 240 speakers, 4 sessions 
– Used for development 

• Both are parallel microphone corpora 
• Rooms and speakers are different in each collection 

– Evaluating on unseen Mixer 6 channel conditions 

 

Microphone Speaker Recognition 

Mixer 6 
– 2008 LDC collection 
– 14 microphones + telephone 
– Conversations and interviews 
– 540 speakers, 2 sessions 
– Used for evaluation 
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Chan Microphone 
01 AT3035 (Audio Technica Studio Mic) 
02 MX418S (Shure Gooseneck Mic) 
03 Crown PZM Soundgrabber II 
04 AT Pro45 (Audio Technica Hanging Mic) 
05 Jabra Cellphone Earwrap Mic 
06 Motorola Cellphone Earbud 
07 Olympus Pearlcorder 
08 Radio Shack Computer Desktop Mic 

Mixer Microphones 

Chan Microphone Distance 
02 Subject Lavalier 8 
04 Podium Mic 17 
10 R0DE NT6 21 
05 PZM Mic 22 
06 AT3035 Studio Mic 22 
08 Panasonic Camcorder 28 
11 Samson C01U 28 
14 Lightspeed Headset On 34 
07 AT Pro45 Hanging Mic 62 
01 Interviewer Lavalier 77 
03 Interviewer Headmic 77 
12 AT815b Shotgun Mic 84 
13 Acoust Array Imagic 110 
09 R0DE NT6 124 

• All 8 Mixer 2 mics used 
• 6 mics from Mixer 6 

– Selected by distance ( green ) 
– Only evaluate same mic trials 
( same mic for enrollment and test ) 

Mixer 1 and 2 (train) Mixer 6 (eval) 
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• All system trained on Switchboard 1 and 2 telephone speech 
• I-vector PLDA system used for all experiments 
• All systems use similar configuration: 

– 2048 Gaussian mixtures, 600 dimensional i-vectors 

• Baseline system uses 40 MFCCs (including 20 deltas) 

Baseline System 
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• Switchboard trained system 
• AVG uses threshold per channel 
• POOL uses only one threshold 

– Reflects channel calibration 
– More practical 

• Remaining results will use POOL 

Baseline Results on Mixer 6 
Mixer 6 Microphone Results 

Test EER Min DCF 
SRE10 5.77 0.662 
Mixer 6 AVG 11.5 0.728 
Mixer 6 POOL 18.8 0.875 

SRE10 (CTS) vs Mixer 6 (MIC) 

Baseline performs poorly (AVG) and is poorly calibrated (POOL) 
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MAP Adapted PLDA Performance 
Mixer 6 Results 
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Big reduction in EER 
But not Min DCF! Lambda = 0.5 
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MAP Adapted PLDA – Tuning Lambda 

Lambda has a big impact on EER 
But not on min DCF 

Mixer 6 EER / min DCF vs. Lambda 
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• Another approach to enhancement is to use a DNN 
• The DNN is trained as a regression 
• Parallel clean and noisy data is needed for this 
• Objective is to reconstructed clean data from a noisy version 

DNN Speech Enhancement 
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• LDC Mixer data was collected over microphones in a room 
• Different mics placed in different locations 
• Clean data comes from telephone handset 
• Expensive approach – limited to specific rooms and mics 

 

Speech Enhancement 
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Channel Compensation I-vector System 
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DNN Feature Enhancement 

• DNN trained using Mixer 2 parallel data 
 

• DNN has the following architecture 
– 40 MFCCs (which includes 20 delta MFCCs) 
– 5 layers and 2048 nodes / layer (5 x 2048) 
– 21 frame input ( +/- 10 frames around center frame) 
– 1 frame output (center frame of clean channel) 
– Input is either clean or one of 8 noisy parallel versions 
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DNN Feature Enhancement Performance 

0.000 

1.000 

min DCF Baseline 

Real Mixer2 

28% 

0.000 

20.000 
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Mixer 6 Results (Real Mixer2) POOL Results 

Big reduction in EER and in Min DCF! 
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• We found several things that impact performance: 
• Log Mel frequency banks – these did not work as well as MFCCs 
• Mean and variance normalization of input and output is critical 
• DNN architecture has a big impact 
• 2048 x 5 (nodes x layers) is best performing 

– But is much more expensive to train than 1024 x 5 
 

DNN Performance Tuning 

DNN Arch EER Min DCF 
  512 x 5 11.4 0.711 
1024 x 5 10.3 0.667 
2048 x 5   8.16 0.633 

POOL Mixer 6 Performance 
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• Map adapted PLDA does not perform well on telephone data 
• DNN compensation gives a gain on telephone data 

– Almost 10% relative gain 

• DNN compensation can be used without channel detection 

Telephone Performance 

Task EER DCF 
Baseline   5.77 0.662 
MAP adapt PLDA 11.9 0.824 
2048x5 DNN   5.20 0.615 

SRE10 Telephone Performance 
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• DNN channel compensation works very well 
– 28% reduction in Min DCF, 49% reduction in EER 

• No loss on telephone data 
– Actually a small gain (~10%) 
– No need to detect channel or switch front-ends 

• MAP adapted PLDA does not work as well 
– Gains at EER but does not improve min DCF 
– Performance issues on telephone data 
– But… easy to implement – only uses i-vectors 

• Note that real parallel data is expensive to collect 
– Synthetic parallel data would be much more practical 

Conclusions 
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