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]@[ Outline

 Multi-channel speaker recognition using Mixer data
 Baseline i-vector system

« MAP adapted PLDA

« DNN channel compensation

e Hybrid i-vector system

* Results

e Conclusions
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@ Microphone Speaker Recognition

Telephone Speech Speaker Good

”””" Recognition ~ Performance

Telephone

Hyper Parameters

Microphone Speech Speaker Poor
'“” . Recoghnition ~ Performance

 Telephone systems generally perform poorly on mic data

« We look at two approaches to address this problem:
— Adapting telephone hyper parameters to microphone data
— Transforming microphone data to look like telephone data
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]@[ Channel Compensation Approaches

MAP adapted PLDA DNN enhancement

- |-vectors are adapted - Features are transformed

- Small performance gain - Substantial performance gain
- Calibration issues - Robust / better calibrated

Can use standard i-vectors

zadapt = AXiel + (1- )X mic

Noisy Clean

« DNN enhancement performs better than MAP adaptation
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@ Microphone Speaker Recognition

 Telephone data used to train speaker recognition system
— Switchboard 1 and 2
— 3100 speakers, 10 sessions

« Two corpora used in this work:

Mixer 2 Mixer 6
— 2004 LDC collection — 2008 LDC collection
— 8 microphones + telephone — 14 microphones + telephone
— Conversational speech — Conversations and interviews
— 240 speakers, 4 sessions — 540 speakers, 2 sessions
— Used for development — Used for evaluation

 Both are parallel microphone corpora

« Rooms and speakers are different in each collection
— Evaluating on unseen Mixer 6 channel conditions
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]@[ Mixer Microphones

Mixer 1 and 2 (train) Mixer 6 (eval)

Chan Microphone
01 |AT3035 (Audio Technica Studio Mic) 02 [Subject Lavalier 8
02 |MX418S (Shure Gooseneck Mic) 04 |[Podium Mic 17
03 [Crown PZM Soundgrabber Il 10 |RODE NT6 21
04 |AT Pro45 (Audio Technica Hanging Mic) 05 [PZM Mic 22
05 |Jabra Cellphone Earwrap Mic 06 |AT3035 Studio Mic 22
06 |Motorola Cellphone Earbud 08 [|Panasonic Camcorder 28
07 [Olympus Pearlcorder 11 [Samson CO1U 28
08 |Radio Shack Computer Desktop Mic 14 |Lightspeed Headset On 34

07 |AT Pro45 Hanging Mic 62

01 |Interviewer Lavalier 77

] ] 03 |Interviewer Headmic 77

 All 8 Mixer 2 mics used 12 |AT815b Shotgun Mic 84
i i 13 |Acoust Array Imagic 110

e 6 mics from Mixer 6 09 |RODE NT6 124

— Selected by distance ( green )
— Only evaluate same mic trials
( same mic for enrollment and test)
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]@[ Baseline System

All system trained on Switchboard 1 and 2 telephone speech

I-vector PLDA system used for all experiments

All systems use similar configuration:
— 2048 Gaussian mixtures, 600 dimensional i-vectors

Baseline system uses 40 MFCCs (including 20 deltas)

Speaker Model

v

Feature Super-Vector I-vector N : Match

“ LAl Extraction | | Extraction " Extraction > Scoring score
Iwe, =
UBM T [m, W] we =AC

UBM Universal background model

T Total variability matrix

m, W Whitening parameters

Iwe Zac Within-class and across-class covariance
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Baseline Results on Mixer 6

Miss probability (in %)
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Mixer 6 Microphone Results

CHO2 (eer=6.10,dcf=0.630)
(2 CHO4 (eer=8.13,dcf=0.645)
> CHO5 (eer=10.37,dcf=0.698)

(=) CHO8 (eer=11.08,dcf=0.781)
' CH13 (eer=17.98,dcf=0.776)

CHO7 (eer=15.14,dcf=0.837) ||

2 5 10 20 40
False Alarm probability (in %)

SRE10 (CTS) vs Mixer 6 (MIC)

Test EER Min DCF
SRE10 5.77 0.662
Mixer 6 AVG 11.5 0.728
Mixer 6 POOL |18.8 0.875

Switchboard trained system
AVG uses threshold per channel

POOL uses only one threshold
— Reflects channel calibration
— More practical

Remaining results will use POOL

Baseline performs poorly (AVG) and is poorly calibrated (POOL) |
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@ MAP Adapted PLDA Performance

Mixer 6 Results POOL Results
5 44 CHO2 (eer=5.85,dcf=0.701) 1.000
2 CHO4 (eer=6.05,dcf=0.687)
: | &—4 CHO5 (eer=7.24,dcf=0.732) = Baseline
WRIN NG 7T a4 CHO7 (eer=9.91,dcf=0.872) [] min
(>3- CHO8 (eer=7.78,dcf=0.820)
2 CH13 (eer=14.91,dcf=0.777) DCF m Adapt
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But not Min DCF!
Lambda = 0.5
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@ MAP Adapted PLDA — Tuning Lambda

Mixer 6 EER / min DCF vs. Lambda
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Lambda has a big impact on EER
> But not on min DCF
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DNN Speech Enhancement

[E]

 Another approach to enhancement is to use a DNN

« The DNN is trained as a regression

« Parallel clean and noisy data is needed for this
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* Objective is to reconstructed clean data from a noisy version
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@[ Speech Enhancement

LDC Mixer data was collected over microphones in aroom

Different mics placed in different locations

Clean data comes from telephone handset
 Expensive approach — limited to specific rooms and mics

Micl

Mic2 O
Mic3 —
Mic4 ~

Tel
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@ Channel Compensation I-vector System

DNN Channel Compensation
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]@[ DNN Feature Enhancement

 DNN trained using Mixer 2 parallel data

* DNN has the following architecture
— 40 MFCCs (which includes 20 delta MFCCs)
— 5 layers and 2048 nodes / layer (5 x 2048)
— 21 frame input ( +/- 10 frames around center frame)
— 1 frame output (center frame of clean channel)
— Input is either clean or one of 8 noisy parallel versions
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@ DNN Feature Enhancement Performance

Mixer 6 Results (Real Mixer2) POOL Results

I I
CHO2 (eer=4.60,dcf=0.532) 1.000
1) CHO4 (eer=5.00,dcf=0.482)
5 CHOS5 (eer=6.33,dcf=0.510)
CHO7 (eer=8.14,dcf=0.600)
= CHO8 (eer=7.15,dcf=0.571) min DCF

28%

® Baseline

9 CH13 (eer=10.65,dcf=0.633)

._i : j H Real Mixer2
% 0.000 -
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= 20.000

._é_"'

EER
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2 5 w20 40
False Alarm probability (in %)

| Big reduction in EER and in Min DCF!
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@ DNN Performance Tuning

We found several things that impact performance:
Log Mel frequency banks —these did not work as well as MFCCs

Mean and variance normalization of input and output is critical

DNN architecture has a big impact

2048 x 5 (nodes x layers) is best performing
— But is much more expensive to train than 1024 x 5

POOL Mixer 6 Performance
DNN Arch EER Min DCF

512 X 5 11.4 0.711
1024 x 5 10.3 0.667
2048 X 5 8.16 0.633
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@ Telephone Performance

« Map adapted PLDA does not perform well on telephone data

« DNN compensation gives a gain on telephone data
— Almost 10% relative gain

« DNN compensation can be used without channel detection

SRE10 Telephone Performance

Task EER DCF
Baseline 5.77 0.662
MAP adapt PLDA 11.9 0.824
2048x5 DNN 5.20 0.615
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]@[ Conclusions

DNN channel compensation works very well
— 28% reduction in Min DCF, 49% reduction in EER

No loss on telephone data
— Actually a small gain (~10%)
— No need to detect channel or switch front-ends

MAP adapted PLDA does not work as well

— Gains at EER but does not improve min DCF
— Performance issues on telephone data

— But... easy to implement — only uses i-vectors

Note that real parallel data is expensive to collect
— Synthetic parallel data would be much more practical
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